Journal of Computational Physi&$8,26—46 (2001)

®
doi:10.1006/jcph.2000.6676, available online at http://www.idealibrary.col DE &l.

Self-Consistent Description of Radial
Space-Charge Confinement
in DC Column Plasmas

M. Schmidt, D. Uhrlandt, and R. Winkler

Institut fur Niedertemperatur-Plasmaphysik, 17489 Greifswald, Germany

Received December 2, 1999; revised October 20, 2000

A new method for the self-consistent description of radial space-charge confine-
mentand the corresponding nonlocal kinetics of plasma components in the cylindrical
dc column plasma is presented. The method comprises the solution of the space-
dependent kinetic equation of the electron component, the fluid equations of ions
and excited neutral particles and Poisson’s equation. The nonlinearly coupled equa-
tions are solved self-consistently applying a nonlinear optimization technique, which
is used to optimize a polynomial representation of the radial space-charge potential.
The applicability of several optimization methods and their suitability concerning the
convergence and accuracy are discussed. Examples of the self-consistent description
are presented. © 2001 Academic Press
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1. INTRODUCTION

In recent years, a more accurate description and a deeper understanding of the s
structure of collision-dominated low-pressure plasmas have been reached. This con
in particular the kinetics of the plasma components in rf and dc glow discharge plasn
where one source of the spatial nonuniformity is the plasma confinement by space chze
in front of the insulated walls. Primarily, an effort has been made to treat more accura
the electron component in such plasmas. It has been shown that a nonlocal treatment
electron kinetics is necessary if the plasma operates at pressures of a few Torr or belo

The comprehensive description of such plasmas should include, in addition, the adec
treatment of the ion and most important neutral components and the description of
space-charge fields and heating electric fields in the plasma. Moreover, the kinetic
the plasma components and the electric field has to be treated self-consistently, w
requires generally the solution of nonlinearly coupled differential equations. To treat
nonlocal kinetics of the electron component, its space-dependent kinetic equation has
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solved. Most existing self-consistent models abstain from the solution of the correspon
complex partial differential equation by applying more or less simplified approaches
describe the nonuniform electron kinetics. The simplifications lead partly to a decoupl
of the description of the electron energy distribution and the hydrodynamic treatment of
plasma components. Finally, only ordinary differential equations such as the fluid equat
have to be solved to determine the densities and the fluxes of the plasma component
Poisson’s equation to determine the space-charge field.

In this paper, the cylindrical positive column of a dc discharge is considered as a typ
representative of a spatially bounded plasma. A new method for the self-consistent des
tion of the space-charge confinement in the cylindrical dc column plasma is presented.
method comprises the accurate treatment of the nonuniform electron kinetics, the ion an
cited atom kinetics, and the radial space charge field by solving the radially inhomogent
electron kinetic equation, the balance equations of excited neutrals, the ion momentun
ance, and Poisson’s equation. These equations are self-consistently solved applyingan
ear optimization technique to obtain the space-charge potential profile. The method doe
include the determination of the axial field strength which, in addition, needs a detailed tr
ment of plasma-wall interaction processes. However, the accurate description of the sy
charge confinement and of the nonuniform kinetics of plasma components represe
necessary step for the development of a complete self-consistent column plasma descri

After a brief presentation of several existing self-consistent models and their limitatio
the basic assumptions to describe the space-charge confined plasma column are given
second section. In the third section the numerical techniques, applied in the correspor
model, are described. The presentation is focussed on details of the optimization techni
and the solution of Poisson’s equation. First results of the method are shown and disct
in Section 4.

Starting with the ambipolar diffusion theory of Schottky [1] in 1924, several models ha
been developed in the pastto self-consistently describe the column plasma kinetics und
action of the radial space-charge confinement. In the following, the degree of limitati
of these models is assessed according to two questions: How roughly simplified is
description of plasma components, in particular that of electrons? What methods are ap
to solve Poisson’s equation and to self-consistently determine the space-charge poter

Many authors [1-4] abstained from the solution of Poisson’s equation and used inste
rough estimation of the space-charge field assuming quasi-neutrality. Their self-consit
models should not be discussed in detail here. Most of the authors who solved Pois:
equation assumed a Maxwellian energy distribution of ions and electrons with constan
and electron temperatures [5-10]. Instead of the kinetic equations they solved the mol
equations, i.e., the fluid equations of electrons and ions coupled with Poisson’s equation
latter is called the moment method in the literature. A treatment of excited atom states
stepwise ionization processes were omitted in these models. Such models are not appl
to describe the nonequilibrium column plasma at lower pressure and lower electron der
where the electron energy distribution strongly deviates from a Maxwellian and distinc
varies with the radial position.

Initial improvements have been achieved by solving the spatially homogene
Boltzmann equation instead of assuming a Maxwellian distribution for the electrons
determine ionization frequencies and transport coefficients as an input for the mor
equations [11]. However, the radial dependence of the electron energy distribution has
been neglected in these models.
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An extension of the moment method, which takes into account the radial variation of
electron temperature and the transport coefficients, has been developed recently by It
[12]. Here, in addition to the radial particle fluxes, a radial heat flux of electrons is describ
The system of moment equations has been extended by the electron energy balance a
heat flux equation. The radially dependent electron transport coefficients—among ot
the diffusion coefficient and the mobility—and the collision frequencies are expressec
functions of the mean electron energy. These functions are obtained from the solutions c
homogeneous Boltzmann equation for an appropriate range of electric field strengths.
approach also avoids the solution of the radially inhomogeneous electron kinetic eque
but in most cases yields better estimates of the transport coefficients. Stronger devia
are expected with respect to the treatment of the charge carrier production by this apprc

The accurate radial variation of the electron collision rates and transport coefficie
can be obtained by the solution of the space-dependent electron kinetic equation «
A numerical solution of this equation to describe the electron kinetics in inhert gas
column plasmas has been performed by several authors [4, 13-22] recently. Most of t
approaches [4, 13, 15, 17-22] are based on the two-term expansion of the electron vel
distribution (EVD) into spherical harmonics. In the other approaches [14, 16], partit
simulation techniques have been used to solve the kinetic equation. However, most of t
authors assumed roughly simplified model functions for the radial space-charge pote
[4, 15, 16, 19, 22, 23] or used a potential function resulting from corresponding electri
probe measurements [17, 18, 21].

Up to now, only some authors [4, 13, 14, 22, 23] have made initial attempts to appl
nonlocal electron kinetic treatment inside a self-consistent positive column model, wh
includes the determination of the radial space-charge field. Hartig and Kushner [13] dedt
the radial field from the radial ambipolar flux avoiding the solution of Poisson’s equatic
Behnkeet al.[4] and Golubovskiet al.[22, 23] started with an electron kinetic treatment for
a given roughly simplified model potential and determined afterwards a new estimate of
potential assuming quasi-neutrality [4, 23] or solving Poisson’s equation [22]. However, ti
did not consistently take into account the coupling of the equations by applying the resul
potential function in an additional treatment of the electron and ion kinetics. Furthermc
the applied treatment of the electrons is based on the so-called nonlocal approach [2
the radially inhomogeneous kinetic equation and, consequently, represents an additio
simplified description of the space-dependent electron kinetics [18, 25].

Parkeret al.[14] made first attempts to solve Poisson’s equation self-consistently coup
with the description of the electron and ion kinetics by means of the convected sche
technique. This method is of excessive expenditure as mentioned in [16].

Except for the recent work of Golubovsket al. [22], all these authors avoided the
additional coupling of the electron kinetic treatment with a balancing of important excit
atom states and described the charge carrier production very roughly by taking into acc
direct ionization of ground state atoms only. The self-consistent coupling of the spati
resolved treatments of the excited atom kinetics and the electron kinetics is describe
[17, 18, 21, 22].

2. BASIC ASSUMPTIONS OF THE MODEL

The column plasma of dc discharges in a pressure range between some tenths of
and some Torr and of an ionization degree below abouf 19 considered. The plasma
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is bounded by an insulated cylindrical tube of radiysand is assumed to be rotationally
symmetric, axially homogeneous, and time-independent. The axial discharge duisent
carried by the electron flux driven by the constant axial electric figldwhich supplies
the plasma with power. The electric power is mainly absorbed by the electrons, wt
then can excite and ionize gas atoms. Consequently, besides the gas atoms in groun
with density No, several excited particle components, with densitigg),l = 1,2, ...
depending on the radial position occur in the plasma. The plasma is maintained by th
production of charge carriers in the plasma volume, which is often dominated by the i
ization of these excited particles. To simplify matters, it is assumed that only one spe
of single-charged ions with the density(r) exists in the plasma. According to the con-
sidered gas pressure range, the ion movement is assumed to be mainly mobility-lim
The electrons and ions tend to diffuse toward the wall, and, since the electrons have a1
larger mobility, a positive charge excess develops in the plasma in the beginning of
discharge operation. Thus, a radial space-charge fig{d) is builtup, which accelerates
the ions and retards the electron movement towards the wall. In a steady-state disch
the radial fluxes of electrons and ions are equal; i.e., an ambipolar radial flux of che
carriers with densityj, (r) is established. These particles recombine on the wall with
rate that completely compensates for the volume production rate. The radial space-ct
potentialV (r) = —f(; E (r") dr’ leads to a rapid decrease of the electron demsity) and,
particularly at low pressures, of the high energy tail of the electron energy distribut
with increasing . This behavior causes a corresponding radial decrease of the produc
rates of excited particles and, hence, of their densities. The radial space-charge field
not supply the electrons with additional power, but it can cause a significant radial fluy
electron energy toward the column center, where the power losses by electron collision
concentrated.

2.1. Kinetics of Electrons and Excited Atoms

The kinetics of the electrons in the dc column plasma is determined by the sps
dependent Boltzmann equation [26]

V'Vrf_%E‘va=chel(f)+ZC|iE(f)+ZC|iO(f) 1)
€ I Ik I

for the velocity distribution functionf of the electrons with charge ey, massme, and
velocityv. On the left-hand side of Eq. (1) the electric fiele= E; (r)e + Exex isincluded.
The impact of elastic, conservative inelastic, and ionizing collisions of electrons with neu
particles in the ground stafe= 0) and in excited statg$ = 1, 2, .. .) is taken into account
by the corresponding collision integra®§'( f), Cl(f), andC/°( f), wherek denotes the
neutral particle state after an inelastic collision process. Collisions of electrons with «
another and with ions can be neglected because of the low ionization degree consid
According to the axial and azimuthal homogeneity of the column plasma, the velo
distribution can be presented by the expansion

3

1 2

f<u, !,r> = —(E) {fo(l’, u) + (6w 4 0, )2 (2)
v 2w \ 2 v v

in spherical harmonics, which is truncated after the second term. This truncation, i.e.,
so-called two-term approximation, is generally applicable if the additional consideratior
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higher order terms do not considerably change the results for the first two terms. This is
in most atomic gas plasmas and in spatially inhomogeneous plasmas, if the electric
normalized on the gas pressure does not become much higher than that typically occu
in a column plasma and if the sum of cross sections of all inelastic collision proces
remains considerably less than the momentum transfer cross section [27]. The latter is
at least in the case of all inert gases and in gas mixtures with a considerable portion of |
gases. The validity of the two-term approximation to describe the electron kinetics in
column of inert gas glow discharges has also been checked by comparisons with pal
simulation methods [16].

Applying (2), the Eq. (1) is reduced to a first-order differential equation system for t
isotropic distributionfy and the anisotropic componerfisand f, related to the radial and
axial direction as functions of the kinetic enengy= mv?/2 and the radial position. The
elimination of the anisotropic components leads, finally, to an elliptic differential equati
for the isotropic distributionfo(r, u). The standard form of this equation is obtained whel
replacing the kinetic energy of the electrons by the total energy=u + w(r), where
w(r) = —eyV (r) represents the potential energy in the radial space-charge field. Apply
the transformation

f (r.e) = f(r,u(r,e), x=0,r2 ©)

and using the abbreviatiofi = u(r, &) = ¢ — w(r), the elliptic equation forfo(r, &)
reads [17]
10 [ a

~ 9 3 - . . .
—f — | (egE,)’D— f fol —OHf fy=o0. 4
ror| or °}+ae[(e° ) de 0 Gfo| —UHTo+S(fo) =0 )

The coefficientss, H, andK and the backscattering terf in Eqg. (4) are given by the
expressions

G(r.e) = 22 M NOQN@. (5a)
H(r e) = Z N (1) QiR (0) +Z N (1) Q° (D), (5b)
D(r,e) = o (5¢)

3(LNMQM@ + H(re))’
S(fo) = (@+u)N @ QR0+ u) Fo(r, & + ui)
Ik
+4> (204 uP)Ni) QP (20 + u°) fo(r. 2 — w + u°)
|

+,/% 37 NI N(r)ZTaE pi). (5d)
Ik

Elastic collision processes between electrons andttheeutral particle component of
mass M are described by the momentum transfer cross se@[bnThe various types of
inelastic electron collisions with the Ith neutral particle component are treated by the t
cross sectionQ|} for exciting and deexciting an@!° for ionizing collisions; andi and
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ul° are the corresponding energy losses. The second ikdexotes the neutral particle
component, which is produced by the exciting and deexciting collision processes. The!
S( f~0) describes by means of the shifted energy argumentsii and 2 — w + ul° the
backscattering of electrons from higher energies caused by inelastic collisions, where
production of electrons in ionizing collisions is taken into account. In addition, the elect
production in chemo-ionization processes with the rate coefficgfitand inscattering
profiles p§" as given in [17] are included.

The electron density. and the rate coefficientg) and z° of exciting and ionizing
electron collisions result from the integrals

o0

Ne(r) = / fo(r, €)0Z de, (6a)

w(r)

()-T(r),/me/Q (@ Folr, )0 e, (6b)

w(r)

Z°(r) =

\ /mi / Qo(0) fo(r, e)0de (6c)
ew(r)

Ne(r)

over the isotropic distributiorﬂ). According to the electron particle balance, which is :
moment equation of (1) and, hence, automatically fulfilled with (1) or (4), respectively, t
radial flux densityj, must satisfy the relation

. 17
(6 = F/P'f(r’)r/dr’, @

0

whereP¥ is the total charge carrier production rate according to

PR(r) =Y Ni(ne)z°m) + > Ni(r)Ne(r)Z. ®)
i I,k
As a consequence of the two-term expansion (2), the axial electric clyismgiven by the

expression
|, = 2mefEyy [ — //D(r g)— foder dr. 9)

0 w(r)

The densitieN, (r),| = 1, 2, ... of the excited atom states are determined by the balan
equations [17]

D"d/ d . .
- r'dr(rdrM(r)) + NI <Z Ne(r)zg () + Ne(r)z°(r) + v|L(r)>

= Z Nk(1)ne(r)zg (1) + PC(r) (102)
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or

1 . ! .
N (r) (E + Zk: Ne(N)zg(r) + ne(r)z°(r) + v|L(r)> = Zk: Nk()ne(r)zg (r) + PE(r)

(10b)

depending on whether thhth component is a metastable or a resonance state. In Eq. (1
the radial diffusion with the diffusion coefficie" is considered, whereas the particle los:
by resonance radiation is described by the effective lifetipj@8] in Eq. (10b). The loss
frequency is;- andPC represents the production rate of tttiecomponent in heavy particle
collision processes, including chemo-ionization processes. The special fofnantl P,®
depends, of course, on the reaction processes considered in the specific gas as illustre
[21]. For the treatment of a neon plasma, a number of processes as described in [29]
been considered.

The system of equations (4) and (10a, 10b) coupled via the coefficients (5a—5d) anc
relations (6a—6c¢) represents a self-consistent model of the space-dependent electro
excited atom kinetics in the column. The input parameters of this model are the exte
discharge parameters (tube radiys currentl,, and neutral gas concentratidd), the
electric field component&, and E; (r), and the atomic data (particle masses, collisiol
cross sections and rate coefficients). In addition, appropriate boundary conditions for
distribution functionfo and the densitieBl; have to be taken into account. The conditions
for N, are given in [21] and those deO are detailed and extensively discussed already i
[17, 20]. Only the most important condition fcfr0 at the tube wall,

CL25] - taemani, )

shall be considered here. The left-hand side of (11) corresponds to the radial anisott
componentﬂ (ry, e) and, hence, the right-hand side of (11) fixes, up to the fadtor
the energetic distribution of the outflowing electrons to the tube wall. This outflow has
compensate the electron production by various ionization processes in the plasma vo
according to the consistent steady-state electron particle balance. Therefore, théfac
can not be freely chosen for given external discharge parameters and field compon
This circumstance becomes obvious from the fact that the kinetic equation (4) and
boundary conditions foan0 except for (11) are homogeneous with respecf(;cat least if
the small term of chemoionization; i.e., the last term in (5d), is neglected. Consequel
the solution forfN0 is largely proportional toA and this factor is finally used to adjust the
solution fo to the given discharge curreiht according to (9). Furthermore, the factor
is applied to adapt the energy dependencé af,,, ¢) to the given discharge conditions.
Unfortunately, the detailed energetic distribution of the outflowing electrons depends
the complex interplay of the plasma with the processes at the wall, which are insufficie
known up to now. However, it can be assumed that, as a consequence of space-cl
confinement, close to the wall only electrons with low kinetic ené€rggan reach the wall
and that the radial anisotropic part of their distribution has to be directed toward the w
Hence, the functiorf, (r,,, £) has to be positive and has to decrease very rapidly With
[17]. However, the specific choice of the exponential function in (11) and loés only
very little influence on the solutiorfO except for in the region close to the wall [20].
The specific choice of the energy dependenceﬂofn (112) is, in a sense, more natural
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than the assumption of other authors [19, 24] supposing Ehaiﬂ; proportional tof~0 at

r =r,. The latter describes a complete or partial adsorption of outflowing electrons
the wall in the framework of the two-term approximation. However, boundary conditior
which are based on the latter assumption, often lead to incorrect numerical solutions o
elliptic problem for given discharge conditions and axial field strengths. This fact becor
obvious from the strong violation of the electron particle balance when it is verified by the
incorrect solutions [19]. However, when applying condition (11) the consistent elect
particle balance becomes fulfilled within the numerical accuracy for any given axial fi
strength and radial potential chosen in reasonable limits. Unphysical solutions have |
obtained only by using a nonmonotonic radial potential, a potential with much lower
higher wall potential (by more than 30%), or a much lower or higher axial field with respe
to corresponding measurements. In particular, this model of the electron kinetics anc
reaction kinetics of excited neutral particles yields reasonable values for the the radial
densityj, (r) and the electron density(r) if the given radial space-charge fidigl(r) and
axial field E, are reasonably close to the real values.

2.2. lon Density and Space-Charge Field

The radial space-charge fielie] (r) is determined by the Poisson equation

1d _ & B
FdT(rE’(r))_?o(”'(r) Ne(r)), (12)

whereegg is the permittivity of free space. To get the ion densityr), an appropriate
treatment of the ion kinetics is required. The common assumption used is that the
energy distribution is a Maxwellian with a temperature independent of the radial posit
and equal to the gas temperature [9]. Thus, the ion kinetics can be treated by their mome
balance equation [7-10],

: 2
1d (f(Jr(f)) ) _ BB ) = i Nez ™ (13)

I’_E n; (r) M

whereM; denotes the ion mass. The first term on the left-hand side describes the ion ine
which becomes important close to the tube wall. The right-hand side includes the ac
of the most important kind of ion collision processes, i.e., the charge transfer collisi
between ions and neutral gas atoms with the constant rate coeffi¢fefihe ion diffusion
term is omitted in Eq. (13) because of the low ion temperature at the considered disch
conditions. According to the symmetry of the column plasma, the conditiii8) =
0, jr (0) = 0, Tne(r)lr—o = 0, and2n; (r)|r—o = O are applied at the column center.
Equations (12) and (13) determine the space-chargeHigld and the ion density; (r)
for given radial flux density; (r ) and electron density(r ). Thus, the solution of these equa-
tions coupled with the treatment of the space-dependent electron and excited atom kin
as detailed above, yields a self-consistent description of the space-charge confined cc
plasma, i.e., a description of all important plasma components and the space-charge
for given axial field strength and discharge parameters. At this point, it has to be pointec
that no relation which that fixes the axial field strength is included in the presented equa
system. Consequently, the kinetics of the column plasma components and the space-c
field can be determined applying, within certain limits, various values of the axial fie
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strength. This means the axial field established in the steady state is determined not on
the physical processes inside the column plasma but also by the complex interplay o
plasmaand the processes at the tube wall. Additional conditions have to be taken into ac
to self-consistently determine the axial field strength in, the dc column plasma, which r
arise from a detailed description of the plasma—wall interaction, e.g., of the establishmel
the surface charge and the efficiency of the charge carrier recombination at dielectric w
The latter is not the topic of this paper. However, this task requires an accurate quantitz
description of the physics in the plasma as provided by the presented model.

3. SOLUTION TECHNIQUE

The complete equation system ultimately consists of the Egs. (4), (10a, b), (12), and {
These equations are nonlinearly coupled by the integral expressions (6a—c) and (7) at
the coefficients (5a—d). In this section the method to solve this nonlinear equation syste
presented. The system can be separated into two subsystems, namely that of (4) and (1
for the treatment of the electron and excited atom kinetics and that of (12) and (13) for
determination of the ion density and the space-charge field. The structure of the el
method is illustrated by means of the scheme in Fig. 1.

The solution method used here for the treatment of the electron and excited atom kine
i.e., the coupled solution of (4) and (10a, b) applying appropriate boundary conditions
the normalization according to (9), has been described in detail in previous papers [17-
and is presupposed in this paper. The basic structure is represented in the scheme in |

In this regard it should be additionally mentioned that instead of Eq. (4), the ordin:
differential equation derived in the scope of the nonlocal approach [18, 24, 25] can
used and solved to simplify the entire solution method. This simplified approach is
plicable under special discharge conditions only and yields less accurate results in ¢
parison with a direct solution of the elliptic equation (4). However, the computation tir
to solve (4) is by a factor of about 10 larger than the application of the nonlocal ¢
proach. Hence, that approach has been used in addition to the strict solution for nume
studies.

At first, several techniques to solve the subsystem of Poisson’s equation (12) and the
momentum balance equation (13) coupled with the treatment of the electron and exc
atom kinetics are discussed. While doing this, the known treatment of the electron
excited atom kinetics is considered to be another subsystem, which yields pndiles
andj2(r) of the electron density and the radial flux density according to (6a) and (7) fo
given radial space-charge fidif(r ) (or given radial potentiaV 9(r )) as indicated in Fig. 1.
Now, usingnd(r) and j3(r), the new profilesi'(r) and E]'(r) of the ion density and the
radial space-charge field have to be determined by means of solving (12) and (13).

One way to treat the subsystem of (12) and (13) is to consider it as a system of differel
equations for a given electron density(r) and radial flux density?(r). Then, an initial
value problem has to be solved fat(r) and E](r) starting from the column center with
appropriate initial values. However, in this case the integration of (12) and (13) for giv
discrete values ofd(r) and j2(r) often diverges after a few integration steps. This ca
be attributed to a stronger deviationrgf(r ), obtained from the momentum balance, from
nd(r), which is fixed and belongs to the given figkf(r). But already small differences
betweennd(r) andn(r) lead to large variations of the radial fieE(r), according to
Poisson’s equation, and can produce a divergence of the numerical solution.
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FIG. 1. Scheme of the self-consistent positive column model.

To avoid the amplification of small deviations of the densities by Poisson’s equati
an alternative treatment of the subsystem of (12) and (13) has been chosen. The Pc
equation (12) is used to calculate the profifgr) of the ion density for the given electron
densitynd(r) and the given radial fiel@E?(r). Thenn(r) and the given3(r) are applied
in the ion momentum balance to get a nEji(r ). Hence, the specific arrangement

n —n9 ﬂi 9
n'(r) = nd(r) + o O (rEJ(N)), (14a)
n _ Mi 1d r<.rg(r))2 g cht
E'(r) = (e <r—a (W) + J7(r)Noz ) (14b)
V() = —/Ef(r’) dr’ (14c)
0

of the equation system is used to determine the new piéfile) of the radial potential.
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The consistent solution of both subsystems and the corresponding profile of the re
potential are found if ultimately the given potenfél(r ) and its new profil&/"(r) coincide;
i.e., the relatioV9(r) = V"(r) holds for all radial positions. The corresponding numerica
task is to find such a potential functidff(r) for which the distance between(r) and
V9(r) becomes sufficiently small. To assess the distance, an appropriate norm functio

h= V) - Vin)| (15)

has to be chosen. Here, either the mean relative Bfothe maximum nornh™2, or the
Euclidean nornh®U®, according to the expressions

m

e _ 1 V) = VEGD)|
= m T Ve (162)
h™ = max|V"(ri) — Vo(ri)l, (16b)
el = 1y " (vier) — Vo), (16¢)

i=1

is considered. The expressions are related to the discretization of the radial potential pr
applyingm radial positions; .

Further on, different numerical methods to find a consistent solution of both subsyste
i.e., to minimizeh, are discussed.

3.1. Iterative Methods

An often used method is an iterative treatment of the subsystems, i.e., startitiyitbea-
tion with the given radial potential9(r) = V®(r) and the corresponding radial field, solv-
ing the subsystem of the electron and excited atom kinetics tafgét) andj(r), which
are then used in (14) insteadnff(r) and j2(r) to calculate’li(k“)(r) and the new functions
E& D (ry and V&Y (r). In the next iteratioV9(r) = V& (r) and ES(r) = E*+D(r)
are used as the given radial potential and field. The iterative procedure is terminated i
distance betwee¥ “*9(r) andV ®(r) is sufficiently small. In some cases, iterative meth.
ods converge very fast and can lead to a sufficiently accurate result after about 10 itera
[24]. However, in the case considered here, a divergence of the iterative method has
generally found for different discharge conditions. The divergence cannot be prevet
by an appropriate blending, i.e., by applyM§(r) = V& (r) + (1 — 0)V®(r) in the
(k 4+ 1)th iteration, where & w < 1 is the blending factor. As an example, the develop
ment of the potential function of a neon column-plasma with radjus 1.7 cm, pressure
po = 74.5 Pa, discharge curreht = 10 mA, axial field strengtli, = 2.12 V/cm, and with
o = 0.1, can be seenin Fig. 2. The potential profile, are compared with that self-consis
potential, which is the result of a successful solution by means of an optimization techni
as explained at the end of this section.

3.2. Basic Aspects of Optimization

A more appropriate way is to use a nonlinear optimization technique to modify a giv
potential profileV9(r) so that the distande according to (15) becomes sufficiently small.
Therefore,V9(r) and h have to be expressed as functions of a number of paramete
Knowing that polynomials are excellent approximations of radial potential profiles obtair
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FIG. 2. Courses of the radial space-charge potential obtained by a simple iterative treatment in compa
with the self-consistent potential.

by probe measurements [18], a polynomial of the reduced radial positignand of
the order 15< n < 30 with the parameter vectar= (ay, ..., a,) € R" has been used to
parameterize the given potential profile and the norm function according to

2 4 5 n+2
r r r r
VOr,a) =a (r—> + ap (r—> +a3(r—) +~-+an<r—> . (173)

h@ = V() = VI, all. (17b)

Theterms of orders 0, 1, and 3 are omitted because of the natural 8fg%&) = 0 and the
symmetry conditions- 2V 9(r, a)|r—o = EY(0,a) = 0 and— I [2 L (r LV I(r, @))]|;—0 ~
dﬂr(n{‘(r) —nd(r))lr—o = 0. The aim of a nonlinear optimization technique is to systemai
cally minimize the norm-functiondi(a) by varying the coefficienta,, ..., a,. Therefore,

it is necessary for every potentMP(r, a), which belongs to a specifig to solve the sub-
system of the electron and excited atom kinetics, as well as the subsystem (14), to o
the correspondiny"(r) andh(a). Generally, there exist two main strategies to find thi
minimum of the functionah(a). The first determines a descent direction aided by a grac
ent evaluation with the aim of performing a search in this direction in every optimizati
step. The second performs a multidirectional search, and this one is often applitehb)e if
is discontinuous or even if the function values are “noisy.” Both variants are treated
discussed in detail in the following to assess their suitability. In particular, algorithms t
can be adapted to run the optimization on parallel computers are considered.
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3.3. Assessment of Various Optimization Techniques

If we assume that(a) has continuous second partial derivatives with respect to all of i
variables, then a gradient method such as the finite difference Newton method, the g
Newton method [30—34], or at least a variation of these, could be applied. The scheme o
finite difference Newton method is to calculate from a starting point a Newton direction &
to perform aline search until one reaches the minimum in that direction. The minimum p
is now chosen as the new starting point. The Newton direction is obtained from the first-
second-order partial derivatives using finite differences. The advantage of gradient metl
is that they often need fewer optimization steps than multidirectional search algorithms,
the numerical cost of every step is at least twice as high.

Among the multidirectional minimum-search algorithms, two methods, a maodifie
minimum-search algorithm in thR" adapted from Hooke and Jeeves (see [35]) and tf
downhill simplex method from Nelder and Mead [36, 34], have been considered.

The minimum-search algorithm varies all components @fith a fixed step size until
h(a) reaches the minimum. Then the step size is shortened and a new search starts.

The downhill simplex method is based on moving a hondegenerate simplex arounc
spaceR", changing its size but not its shape. The nondegenerate simplex is formed by
point a and additionah points resulting from the variation of each coordinateaofhe
movement of the simplex is managed in such a way that the neighborhood of the co
point with the smallest value &ifis examined systematically in each case and that the val
of h converges to a minimum during the movement. For this, the simplex is compress
expanded, or reflected at the corner point with the smallest vallugaofd the functiorn is
calculated for each of the other corner points of the simplex in every step. The advan
of the downhill simplex method is that it is relatively robust against cycles in the variati
of a and against falling into a local minima of the functiomhaé).

These three minimum-search algorithms have been implemented and checked. t
all three different norm functions have been used alternativelyhfay to regulate the
variation ofa and to check the convergence. It has turned out that the mean relative err
the best norm function to steer the minimum-search algorithm, i.e., toaiarguch way
that the algorithm finds an optimum course to the minimum point. However, the Euclide
norm is the most suitable norm function to steer the downhill simplex method and
finite difference Newton method. The maximum norm is the appropriate one to asses:t
convergence of the radial potential function and to break off the search algorithms, bec:
the maximum error mostly appears at radial positions very near the column wall, where
potential profile strongly influences the radial flux of charge carriers toward the wall.

Figure 3 shows typical progressions of the three norm functions over a range of !
optimization steps for the three different minimum-search algorithms. Here, a poten
function according to (17a) with = 20 has been used and the same discharge situati
as in Fig. 2 has been treated. The finite difference Newton method yields a consider
error reduction after about 40 steps but then comes into a saturation range with a
slow improvement of the potential function. In particular, the mean relative error and
Euclidean norm are much higher than for the other methods after 500 steps. The saturat
the error reduction is a typical behavior of the finite difference Newton method and indice
thatalocal minimum instead of a global minimum in the functidr@) has been found. The
minimum-search algorithm in Fig. 3b leads to very small values of all three norms alre:
after about 100 steps. However, during further steps the norm functions slightly incre
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FIG.3. Courses of the maximum nornT® (solid line), the Euclidean norimf'® (dashed line), and the mean
relative errorh™ (dotted line) related to 300 radial positions over 500 optimization steps of the finite differen
Newton method (a), the minimum-search algorithm (b), and the downhill simplex method (c).

except for the mean relative error, which has been used to steer the potential variatic
that method. A disadvantage of the minimum-search algorithm is the irregularity of
error reduction, which leads to a cyclic behavior of the potential variation in some ca:
The most continuous decrease of the norm functions has been obtained by the dow
simplex method, which can be seen in Fig. 3c. This method leads after 500 steps tc
smallest maximum norm, which is the most significant one to assess the improvement
potential profile. The continuous error decrease indicates the stability of that method, wt
among the three methods, most rarely comes into a saturation of the potential varia
An additional advantage of the multidirectional minimum-search algorithms in comparis
with Newton-like methods is that one step in the downhill simplex method as well as
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the minimum-search algorithm needs half as much steps of evaluation of a new pote
profile by treating each time the electron and excited atom kinetics and applying (3
Consequently, the downhill simplex method is the most stable and efficient method
finding a consistent solution for the radial potential.

Additionally, the achieved accuracy of the result, strongly depends on the model func
used forV9(r, a). Sufficient accuracy in the adjustment of the radial potential, i.e., a me
relative error of less then 0.1% and a maximum norm of less then 0.1 V (which me
about 0.5% of the radial potential at the wall), can be reached using polynomial functi
according to (17a) of an appropriate order. In Fig. 4 the dependence of the three n
progressions for the downhill simplex method on the number of coefficients and on
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FIG. 4. Courses of norm functions as in Fig. 3 over 500 optimization steps of the downhill simplex meth
where a polynomial function with 16 coefficients (a), with 20 coefficients (b), and with 30 coefficients (c) f
been used foV9(r, a).
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chosen powers of the polynomial are demonstrated as in Fig. 3. A polynomiah witB0
and 20 coefficients has been used in Fig. 4b and a polynomiahwtt30 and 30 coefficients
has been considered in Fig. 4c. In Fig. 4a, a polynomial according to (17apwitR0
(however, without the terms involving the coefficieats, a3, a;s, anda;7, and therefore
with only 16 coefficients) has been used. It can be seen that only in the case of 20 coeffic
a continuous decrease of all norm functions over 500 optimization steps has been obta
Finally, a maximum norm of about 0.4 V has been reached. In the case of 16 coefficie
after the first 100 steps no further reduction of the maximum norm and, hence, no fur
improvement of the radial potential function could be reached because of the insuffic
model function. The norm progressions in Fig. 4c, belonging to the case of 30 coefficie
look similar to those in Fig. 4a. However, the insufficient error reduction over 500 ste
in this case is presumably caused by the greater effort of the function minimization in
30-dimensional space.

4. ILLUSTRATIVE RESULTS

In this section, results obtained by the method elucidated in the preceding section
be presented. As an example, again the neon dc discharge at 74.5 Pa pressure in
with the radius 1.7 cm is considered. For a discharge current of 10 mA an axial elec
field strength ofE; = 2.12 V/cm in the column plasma has been found by electrical prol
measurements [18].

The radial space-charge potential has been self-consistently adjusted using the dov
simplex method and a polynomial with 20 coefficients according to (17a). The radie
inhomogeneous electron kinetics within this method has been treated by strictly solving
elliptic EqQ. (4) as well as by applying instead of (4) the above mentioned nonlocal appro:

The corresponding results for the radial space-charge pot&ftialare shown in Fig. 5.
The results have been obtained using the axial field stréfgth 2.12 V/cm according to the
measurements. The potential profile obtained by applying the nonlocal approach exceec
profile obtained by solving Eq. (4) particularly in the region near the tube wall. This discr
ancy results mainly from the overestimation of the charge carrier production and, he
of the densityj, of the radial ambipolar flux of charge carriers by the nonlocal approac
which have been extensively discussed already in previous papers [18, 25]. The latte
be clearly seen from the corresponding profileg,gfresented additionally in Fig. 5.

InFigs. 6 and 7 the densities of the mostimportant particle components in the noon pla:
i.e., of electrons, ions, and atoms in the lower excited states, and the rate coefficien
important electron collision processes are shown as functions of the radial position. Tl
guantities are related to the radial potential displayed in Fig. 5 by the solid line and h
been obtained by the self-consistent description including Eq. (4). In particular, the dens
of the resonance stategands, strongly decrease with increasing radial position. Large
deviations between the electron and ion density have been found in the range from &
80% of the tube radius onward. The strong radial decrease of important electron colli
rate coefficients, in particular, those of excitation and ionization of the ground state n
atoms with increasing radial position, indicates the pronouncedly nonlocal behavior of
neon plasma at the considered pressure.

If the value of the axial field strength; is changed around the measured axial field c
2.12 Vicm, a sensitive dependence of the radial potentiél,ae obtained. Figure 8 shows
the profiles ofV (r) obtained by the self-consistent description including Eq. (4) for thre
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consistent description by strictly solving Eq. (4) (solid and dash-dotted line) and by applying the nonlocal appre
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values ofE,, in comparison with the radial potential found by probe measurements [1
Notice that for all these different values of the axial field, reasonable results for the pla:
properties, in particular for the electron kinetic quantities, have been obtained. The accu
of the results has been checked by, among other things, the fulfillment of the electron pa
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FIG. 8. Radial space-charge potentMlr) from the self-consistent description by strictly solving Eq. (4)
and applying the values 2.1 (dashed line), 2.2 (solid line), and 2.3 V/cm (dash-dotted line) of the axt/ field
comparison with the result of probe measurements (dotted line).
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and power balance. Here, the numerical deviations from the fulfillment amount to less t
2% in the particle balance and less than 0.5% in the power balance. It becomes ob\
from Fig. 8 that quite good agreement between the measurements and the theoretical
for E; = 2.2 V/cm has been reached.

Consequently, the presented method for the self-consistent description allows a re
accurate determination of the radial space-charge potential if an appropriate value o
axial field strength is given and the relevant atomic data are known with sufficient accur:

5. CONCLUSION

A method for the self-consistent description of radial space-charge potential and kil
ics of the plasma components in the cylindrical axially homogeneous column plasm:
dc discharges has been developed. The treatment of the nonlocal kinetics of the ele
component is based on the solution of the relevant radially inhomogeneous kinetic eque
applying a two-term expansion of the electron velocity distribution. The densities of t
excited neutral particles in the plasma are determined by their particle balances. The
momentum balance and the Poisson equation are used to calculate the ion density ar
radial potential.

Several techniques to solve self-consistently these nonlinearly coupled equations
been applied and assessed concerning their convergence and applicability. The techr
used are based on the iterative improvement or optimization of the radial profile of
radial space-charge potential. In the scope of these techniques, in every step the ele
and excited particle kinetics are consistently treated for a given radial potential, wh
yields, especially, corresponding radial profiles for the electron density and the den
of the radial ambipolar flux. Using these densities, a new potential is obtained apply
the ion momentum balance and Poisson’s equation. The given potential profiles have
varied and the treatment of the plasma components has been repeated until the new po
sufficiently coincides with the given potential. It has been found that the iterative adjustm
of the radial potential, i.e., taking the new potential, as the given potential in the next s
is inapplicable to solving the relevant nonlinear equation system. Appropriate meth
to find the self-consistent radial potential are function minimization techniques such
gradient methods or multidirectional minimum-search algorithms. These techniques
been used to optimize the coefficients of an appropriate polynomial representation of
radial potential in such away thatthe distance between the polynomial and the correspor
new potential approaches a minimum. The downhill simplex method of Nelder and Me
[36] with an appropriate steering using the Euclidean norm has turned out to be the r
stable and suitable technique for optimizing the radial potential profile.

Initial results of the method for the column plasma of a neon dc discharge at a pressu
74.5 Pa have been presented to illustrate the power of this optimization technique. The:
electric field strength has an unexpectedly sensitive influence on the radial space-ct
potential. Furthermore, it could be clearly shown that the use of the nonlocal approac
treat the radially inhomogeneous electron kinetics instead of the strict kinetic treatm
leads to a noticeable enhancement of the radial potential course especially in the ¢
column region.

By using the new method it could be demonstrated that a steady state of a column pla
including the space-charge confinement (i.e., reasonable solutions for the electron quan
the densities of ions and excited atoms, and the space-charge field) can be self-consis
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determined for several in reasonable limits given values of the axial field strength. This

m
in

eans that the steady state of a column plasma and, in particular, the axial field establ
the steady state, is not sufficiently determined by the involved basic equations of

kinetics of plasma components inside the column. Additional conditions have to be ta
into account that answer the question of what happens when the charge carriers reac
wall. Such conditions may eventually result from a detailed description of plasma—v
interaction processes, in particular of the adsorption and recombination of charge car
and the establishment of the negative surface charge at the wall. In this respect, addit
effort has to be undertaken to elaborate the basic physical mechanisms, which deter

th
m

e axial field strength, and to deduce the appropriate conditions. However, the prese
ethod is a necessary and important step for such an extended investigation and fc

development of a complete self-consistent description of the column plasma, includin
interaction with the discharge tube wall.

[N
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