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A new method for the self-consistent description of radial space-charge confine-
ment and the corresponding nonlocal kinetics of plasma components in the cylindrical
dc column plasma is presented. The method comprises the solution of the space-
dependent kinetic equation of the electron component, the fluid equations of ions
and excited neutral particles and Poisson’s equation. The nonlinearly coupled equa-
tions are solved self-consistently applying a nonlinear optimization technique, which
is used to optimize a polynomial representation of the radial space-charge potential.
The applicability of several optimization methods and their suitability concerning the
convergence and accuracy are discussed. Examples of the self-consistent description
are presented. c© 2001 Academic Press
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1. INTRODUCTION

In recent years, a more accurate description and a deeper understanding of the spatial
structure of collision-dominated low-pressure plasmas have been reached. This concerns
in particular the kinetics of the plasma components in rf and dc glow discharge plasmas,
where one source of the spatial nonuniformity is the plasma confinement by space charges
in front of the insulated walls. Primarily, an effort has been made to treat more accurately
the electron component in such plasmas. It has been shown that a nonlocal treatment of the
electron kinetics is necessary if the plasma operates at pressures of a few Torr or below.

The comprehensive description of such plasmas should include, in addition, the adequate
treatment of the ion and most important neutral components and the description of the
space-charge fields and heating electric fields in the plasma. Moreover, the kinetics of
the plasma components and the electric field has to be treated self-consistently, which
requires generally the solution of nonlinearly coupled differential equations. To treat the
nonlocal kinetics of the electron component, its space-dependent kinetic equation has to be
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solved. Most existing self-consistent models abstain from the solution of the corresponding
complex partial differential equation by applying more or less simplified approaches to
describe the nonuniform electron kinetics. The simplifications lead partly to a decoupling
of the description of the electron energy distribution and the hydrodynamic treatment of the
plasma components. Finally, only ordinary differential equations such as the fluid equations
have to be solved to determine the densities and the fluxes of the plasma components and
Poisson’s equation to determine the space-charge field.

In this paper, the cylindrical positive column of a dc discharge is considered as a typical
representative of a spatially bounded plasma. A new method for the self-consistent descrip-
tion of the space-charge confinement in the cylindrical dc column plasma is presented. The
method comprises the accurate treatment of the nonuniform electron kinetics, the ion and ex-
cited atom kinetics, and the radial space charge field by solving the radially inhomogeneous
electron kinetic equation, the balance equations of excited neutrals, the ion momentum bal-
ance, and Poisson’s equation. These equations are self-consistently solved applying a nonlin-
ear optimization technique to obtain the space-charge potential profile. The method does not
include the determination of the axial field strength which, in addition, needs a detailed treat-
ment of plasma-wall interaction processes. However, the accurate description of the space-
charge confinement and of the nonuniform kinetics of plasma components represents a
necessary step for the development of a complete self-consistent column plasma description.

After a brief presentation of several existing self-consistent models and their limitations,
the basic assumptions to describe the space-charge confined plasma column are given in the
second section. In the third section the numerical techniques, applied in the corresponding
model, are described. The presentation is focussed on details of the optimization techniques
and the solution of Poisson’s equation. First results of the method are shown and discussed
in Section 4.

Starting with the ambipolar diffusion theory of Schottky [1] in 1924, several models have
been developed in the past to self-consistently describe the column plasma kinetics under the
action of the radial space-charge confinement. In the following, the degree of limitations
of these models is assessed according to two questions: How roughly simplified is the
description of plasma components, in particular that of electrons? What methods are applied
to solve Poisson’s equation and to self-consistently determine the space-charge potential?

Many authors [1–4] abstained from the solution of Poisson’s equation and used instead a
rough estimation of the space-charge field assuming quasi-neutrality. Their self-consistent
models should not be discussed in detail here. Most of the authors who solved Poisson’s
equation assumed a Maxwellian energy distribution of ions and electrons with constant ion
and electron temperatures [5–10]. Instead of the kinetic equations they solved the moment
equations, i.e., the fluid equations of electrons and ions coupled with Poisson’s equation. The
latter is called the moment method in the literature. A treatment of excited atom states and
stepwise ionization processes were omitted in these models. Such models are not applicable
to describe the nonequilibrium column plasma at lower pressure and lower electron density,
where the electron energy distribution strongly deviates from a Maxwellian and distinctly
varies with the radial position.

Initial improvements have been achieved by solving the spatially homogeneous
Boltzmann equation instead of assuming a Maxwellian distribution for the electrons to
determine ionization frequencies and transport coefficients as an input for the moment
equations [11]. However, the radial dependence of the electron energy distribution has also
been neglected in these models.



28 SCHMIDT, UHRLANDT, AND WINKLER

An extension of the moment method, which takes into account the radial variation of the
electron temperature and the transport coefficients, has been developed recently by Ingold
[12]. Here, in addition to the radial particle fluxes, a radial heat flux of electrons is described.
The system of moment equations has been extended by the electron energy balance and the
heat flux equation. The radially dependent electron transport coefficients—among others
the diffusion coefficient and the mobility—and the collision frequencies are expressed as
functions of the mean electron energy. These functions are obtained from the solutions of the
homogeneous Boltzmann equation for an appropriate range of electric field strengths. This
approach also avoids the solution of the radially inhomogeneous electron kinetic equation
but in most cases yields better estimates of the transport coefficients. Stronger deviations
are expected with respect to the treatment of the charge carrier production by this approach.

The accurate radial variation of the electron collision rates and transport coefficients
can be obtained by the solution of the space-dependent electron kinetic equation only.
A numerical solution of this equation to describe the electron kinetics in inhert gas dc
column plasmas has been performed by several authors [4, 13–22] recently. Most of these
approaches [4, 13, 15, 17–22] are based on the two-term expansion of the electron velocity
distribution (EVD) into spherical harmonics. In the other approaches [14, 16], particle
simulation techniques have been used to solve the kinetic equation. However, most of these
authors assumed roughly simplified model functions for the radial space-charge potential
[4, 15, 16, 19, 22, 23] or used a potential function resulting from corresponding electrical
probe measurements [17, 18, 21].

Up to now, only some authors [4, 13, 14, 22, 23] have made initial attempts to apply a
nonlocal electron kinetic treatment inside a self-consistent positive column model, which
includes the determination of the radial space-charge field. Hartig and Kushner [13] deduced
the radial field from the radial ambipolar flux avoiding the solution of Poisson’s equation.
Behnkeet al.[4] and Golubovskiiet al.[22, 23] started with an electron kinetic treatment for
a given roughly simplified model potential and determined afterwards a new estimate of the
potential assuming quasi-neutrality [4, 23] or solving Poisson’s equation [22]. However, they
did not consistently take into account the coupling of the equations by applying the resulting
potential function in an additional treatment of the electron and ion kinetics. Furthermore,
the applied treatment of the electrons is based on the so-called nonlocal approach [24] of
the radially inhomogeneous kinetic equation and, consequently, represents an additionally
simplified description of the space-dependent electron kinetics [18, 25].

Parkeret al.[14] made first attempts to solve Poisson’s equation self-consistently coupled
with the description of the electron and ion kinetics by means of the convected scheme
technique. This method is of excessive expenditure as mentioned in [16].

Except for the recent work of Golubovskiiet al. [22], all these authors avoided the
additional coupling of the electron kinetic treatment with a balancing of important excited
atom states and described the charge carrier production very roughly by taking into account
direct ionization of ground state atoms only. The self-consistent coupling of the spatially
resolved treatments of the excited atom kinetics and the electron kinetics is described, in
[17, 18, 21, 22].

2. BASIC ASSUMPTIONS OF THE MODEL

The column plasma of dc discharges in a pressure range between some tenths of a Torr
and some Torr and of an ionization degree below about 10−5 is considered. The plasma
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is bounded by an insulated cylindrical tube of radiusrw and is assumed to be rotationally
symmetric, axially homogeneous, and time-independent. The axial discharge currentIz is
carried by the electron flux driven by the constant axial electric fieldEz, which supplies
the plasma with power. The electric power is mainly absorbed by the electrons, which
then can excite and ionize gas atoms. Consequently, besides the gas atoms in ground state
with density N0, several excited particle components, with densitiesNl (r ), l = 1, 2, . . .
depending on the radial positionr , occur in the plasma. The plasma is maintained by the
production of charge carriers in the plasma volume, which is often dominated by the ion-
ization of these excited particles. To simplify matters, it is assumed that only one species
of single-charged ions with the densityni (r ) exists in the plasma. According to the con-
sidered gas pressure range, the ion movement is assumed to be mainly mobility-limited.
The electrons and ions tend to diffuse toward the wall, and, since the electrons have a much
larger mobility, a positive charge excess develops in the plasma in the beginning of the
discharge operation. Thus, a radial space-charge fieldEr (r ) is builtup, which accelerates
the ions and retards the electron movement towards the wall. In a steady-state discharge,
the radial fluxes of electrons and ions are equal; i.e., an ambipolar radial flux of charge
carriers with densityjr (r ) is established. These particles recombine on the wall with a
rate that completely compensates for the volume production rate. The radial space-charge
potentialV(r )=−∫ r

0 Er (r ′) dr ′ leads to a rapid decrease of the electron densityne(r ) and,
particularly at low pressures, of the high energy tail of the electron energy distribution
with increasingr . This behavior causes a corresponding radial decrease of the production
rates of excited particles and, hence, of their densities. The radial space-charge field does
not supply the electrons with additional power, but it can cause a significant radial flux of
electron energy toward the column center, where the power losses by electron collisions are
concentrated.

2.1. Kinetics of Electrons and Excited Atoms

The kinetics of the electrons in the dc column plasma is determined by the space-
dependent Boltzmann equation [26]
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for the velocity distribution functionf of the electrons with charge−e0, massme, and
velocityv. On the left-hand side of Eq. (1) the electric fieldE = Er (r )er + Exex is included.
The impact of elastic, conservative inelastic, and ionizing collisions of electrons with neutral
particles in the ground state(l = 0) and in excited states(l = 1, 2, . . .) is taken into account
by the corresponding collision integralsCel

l ( f ),Cin
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l ( f ), wherek denotes the
neutral particle state after an inelastic collision process. Collisions of electrons with one
another and with ions can be neglected because of the low ionization degree considered.
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distribution can be presented by the expansion
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in spherical harmonics, which is truncated after the second term. This truncation, i.e., the
so-called two-term approximation, is generally applicable if the additional consideration of
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higher order terms do not considerably change the results for the first two terms. This is true
in most atomic gas plasmas and in spatially inhomogeneous plasmas, if the electric field
normalized on the gas pressure does not become much higher than that typically occurring
in a column plasma and if the sum of cross sections of all inelastic collision processes
remains considerably less than the momentum transfer cross section [27]. The latter is valid
at least in the case of all inert gases and in gas mixtures with a considerable portion of inert
gases. The validity of the two-term approximation to describe the electron kinetics in the
column of inert gas glow discharges has also been checked by comparisons with particle
simulation methods [16].

Applying (2), the Eq. (1) is reduced to a first-order differential equation system for the
isotropic distributionf0 and the anisotropic componentsfr and fz related to the radial and
axial direction as functions of the kinetic energyu = mv2/2 and the radial positionr . The
elimination of the anisotropic components leads, finally, to an elliptic differential equation
for the isotropic distributionf0(r, u). The standard form of this equation is obtained when
replacing the kinetic energyu of the electrons by the total energyε = u+ w(r ), where
w(r ) = −e0V(r ) represents the potential energy in the radial space-charge field. Applying
the transformation

f̃ x(r, ε) = fx(r, u(r, ε)), x = 0, r, z (3)

and using the abbreviation̂u ≡ u(r, ε) = ε − w(r ), the elliptic equation for f̃ 0(r, ε)
reads [17]
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The coefficientsG, H , andK and the backscattering termS0 in Eq. (4) are given by the
expressions
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Elastic collision processes between electrons and thel th neutral particle component of
mass Ml are described by the momentum transfer cross sectionQm

l . The various types of
inelastic electron collisions with the lth neutral particle component are treated by the total
cross sectionsQin

lk for exciting and deexciting andQio
l for ionizing collisions; anduin

lk and
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uio
l are the corresponding energy losses. The second indexk denotes the neutral particle

component, which is produced by the exciting and deexciting collision processes. The term
S0( f̃ 0) describes by means of the shifted energy argumentsε + uin

lk and 2ε − w + uio
l the

backscattering of electrons from higher energies caused by inelastic collisions, where the
production of electrons in ionizing collisions is taken into account. In addition, the electron
production in chemo-ionization processes with the rate coefficientszch

lk and inscattering
profiles pch

lk as given in [17] are included.
The electron densityne and the rate coefficientszin

lk and zio
l of exciting and ionizing

electron collisions result from the integrals
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over the isotropic distributionf̃ 0. According to the electron particle balance, which is a
moment equation of (1) and, hence, automatically fulfilled with (1) or (4), respectively, the
radial flux densityjr must satisfy the relation
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wherePio
6 is the total charge carrier production rate according to
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As a consequence of the two-term expansion (2), the axial electric currentIz is given by the
expression
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The densitiesNl (r ), l = 1, 2, . . . of the excited atom states are determined by the balance
equations [17]
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depending on whether thel th component is a metastable or a resonance state. In Eq. (10a)
the radial diffusion with the diffusion coefficientDm

l is considered, whereas the particle loss
by resonance radiation is described by the effective lifetimeτl [28] in Eq. (10b). The loss
frequency isνL

l andPG
l represents the production rate of thel th component in heavy particle

collision processes, including chemo-ionization processes. The special form ofνL
l andPG

l

depends, of course, on the reaction processes considered in the specific gas as illustrated in
[21]. For the treatment of a neon plasma, a number of processes as described in [29] have
been considered.

The system of equations (4) and (10a, 10b) coupled via the coefficients (5a–5d) and the
relations (6a–6c) represents a self-consistent model of the space-dependent electron and
excited atom kinetics in the column. The input parameters of this model are the external
discharge parameters (tube radiusrw, current Iz, and neutral gas concentrationN0), the
electric field componentsEz and Er (r ), and the atomic data (particle masses, collision
cross sections and rate coefficients). In addition, appropriate boundary conditions for the
distribution function f̃ 0 and the densitiesNl have to be taken into account. The conditions
for Nl are given in [21] and those for̃f 0 are detailed and extensively discussed already in
[17, 20]. Only the most important condition for̃f 0 at the tube wall,[

− 1

K

∂

∂r
f̃ 0

]
r=rw

= [ Aexp(aû2)]r=rw , (11)

shall be considered here. The left-hand side of (11) corresponds to the radial anisotropic
component f̃ r (rw, ε) and, hence, the right-hand side of (11) fixes, up to the factorA,
the energetic distribution of the outflowing electrons to the tube wall. This outflow has to
compensate the electron production by various ionization processes in the plasma volume
according to the consistent steady-state electron particle balance. Therefore, the factorA
can not be freely chosen for given external discharge parameters and field components.
This circumstance becomes obvious from the fact that the kinetic equation (4) and all
boundary conditions for̃f 0 except for (11) are homogeneous with respect tof̃ 0 at least if
the small term of chemoionization; i.e., the last term in (5d), is neglected. Consequently,
the solution for f̃ 0 is largely proportional toA and this factor is finally used to adjust the
solution f̃ 0 to the given discharge currentIz according to (9). Furthermore, the factora
is applied to adapt the energy dependence off̃ r (rw, ε) to the given discharge conditions.
Unfortunately, the detailed energetic distribution of the outflowing electrons depends on
the complex interplay of the plasma with the processes at the wall, which are insufficiently
known up to now. However, it can be assumed that, as a consequence of space-charge
confinement, close to the wall only electrons with low kinetic energyû can reach the wall
and that the radial anisotropic part of their distribution has to be directed toward the wall.
Hence, the functionf̃ r (rw, ε) has to be positive and has to decrease very rapidly withû
[17]. However, the specific choice of the exponential function in (11) and ofa has only
very little influence on the solutioñf 0 except for in the region close to the wall [20].
The specific choice of the energy dependence off̃ r in (11) is, in a sense, more natural
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than the assumption of other authors [19, 24] supposing thatf̃ r is proportional to f̃ 0 at
r = rw. The latter describes a complete or partial adsorption of outflowing electrons on
the wall in the framework of the two-term approximation. However, boundary conditions,
which are based on the latter assumption, often lead to incorrect numerical solutions of the
elliptic problem for given discharge conditions and axial field strengths. This fact becomes
obvious from the strong violation of the electron particle balance when it is verified by those
incorrect solutions [19]. However, when applying condition (11) the consistent electron
particle balance becomes fulfilled within the numerical accuracy for any given axial field
strength and radial potential chosen in reasonable limits. Unphysical solutions have been
obtained only by using a nonmonotonic radial potential, a potential with much lower or
higher wall potential (by more than 30%), or a much lower or higher axial field with respect
to corresponding measurements. In particular, this model of the electron kinetics and the
reaction kinetics of excited neutral particles yields reasonable values for the the radial flux
density jr (r ) and the electron densityne(r ) if the given radial space-charge fieldEr (r ) and
axial field Ez are reasonably close to the real values.

2.2. Ion Density and Space-Charge Field

The radial space-charge fieldEr (r ) is determined by the Poisson equation

1

r

d

dr
(r Er (r )) = e0

ε0
(ni (r )− ne(r )), (12)

whereε0 is the permittivity of free space. To get the ion densityni (r ), an appropriate
treatment of the ion kinetics is required. The common assumption used is that the ion
energy distribution is a Maxwellian with a temperature independent of the radial position
and equal to the gas temperature [9]. Thus, the ion kinetics can be treated by their momentum
balance equation [7–10],

1

r

d

dr

(
r ( jr (r ))2

ni (r )

)
− e0Er (r )

Mi
ni (r ) = − jr (r )N0zcht, (13)

whereMi denotes the ion mass. The first term on the left-hand side describes the ion inertia,
which becomes important close to the tube wall. The right-hand side includes the action
of the most important kind of ion collision processes, i.e., the charge transfer collisions
between ions and neutral gas atoms with the constant rate coefficientzcht. The ion diffusion
term is omitted in Eq. (13) because of the low ion temperature at the considered discharge
conditions. According to the symmetry of the column plasma, the conditionsEr (0) =
0, jr (0) = 0, d

dr ne(r )|r=0 = 0, and d
dr ni (r )|r=0 = 0 are applied at the column center.

Equations (12) and (13) determine the space-charge fieldEr (r ) and the ion densityni (r )
for given radial flux densityjr (r )and electron densityne(r ). Thus, the solution of these equa-
tions coupled with the treatment of the space-dependent electron and excited atom kinetics,
as detailed above, yields a self-consistent description of the space-charge confined column
plasma, i.e., a description of all important plasma components and the space-charge field
for given axial field strength and discharge parameters. At this point, it has to be pointed out
that no relation which that fixes the axial field strength is included in the presented equation
system. Consequently, the kinetics of the column plasma components and the space-charge
field can be determined applying, within certain limits, various values of the axial field
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strength. This means the axial field established in the steady state is determined not only by
the physical processes inside the column plasma but also by the complex interplay of the
plasma and the processes at the tube wall. Additional conditions have to be taken into account
to self-consistently determine the axial field strength in, the dc column plasma, which may
arise from a detailed description of the plasma–wall interaction, e.g., of the establishment of
the surface charge and the efficiency of the charge carrier recombination at dielectric walls.
The latter is not the topic of this paper. However, this task requires an accurate quantitative
description of the physics in the plasma as provided by the presented model.

3. SOLUTION TECHNIQUE

The complete equation system ultimately consists of the Eqs. (4), (10a, b), (12), and (13).
These equations are nonlinearly coupled by the integral expressions (6a–c) and (7) and by
the coefficients (5a–d). In this section the method to solve this nonlinear equation system is
presented. The system can be separated into two subsystems, namely that of (4) and (10a, b)
for the treatment of the electron and excited atom kinetics and that of (12) and (13) for the
determination of the ion density and the space-charge field. The structure of the entire
method is illustrated by means of the scheme in Fig. 1.

The solution method used here for the treatment of the electron and excited atom kinetics,
i.e., the coupled solution of (4) and (10a, b) applying appropriate boundary conditions and
the normalization according to (9), has been described in detail in previous papers [17–21]
and is presupposed in this paper. The basic structure is represented in the scheme in Fig. 1.

In this regard it should be additionally mentioned that instead of Eq. (4), the ordinary
differential equation derived in the scope of the nonlocal approach [18, 24, 25] can be
used and solved to simplify the entire solution method. This simplified approach is ap-
plicable under special discharge conditions only and yields less accurate results in com-
parison with a direct solution of the elliptic equation (4). However, the computation time
to solve (4) is by a factor of about 10 larger than the application of the nonlocal ap-
proach. Hence, that approach has been used in addition to the strict solution for numerical
studies.

At first, several techniques to solve the subsystem of Poisson’s equation (12) and the ion
momentum balance equation (13) coupled with the treatment of the electron and excited
atom kinetics are discussed. While doing this, the known treatment of the electron and
excited atom kinetics is considered to be another subsystem, which yields profilesng

e(r )
and j g

r (r ) of the electron density and the radial flux density according to (6a) and (7) for a
given radial space-charge fieldEg

r (r ) (or given radial potentialVg(r )) as indicated in Fig. 1.
Now, usingng

e(r ) and j g
r (r ), the new profilesnn

i (r ) and En
r (r ) of the ion density and the

radial space-charge field have to be determined by means of solving (12) and (13).
One way to treat the subsystem of (12) and (13) is to consider it as a system of differential

equations for a given electron densityng
e(r ) and radial flux densityj g

r (r ). Then, an initial
value problem has to be solved fornn

i (r ) andEn
r (r ) starting from the column center with

appropriate initial values. However, in this case the integration of (12) and (13) for given
discrete values ofng

e(r ) and j g
r (r ) often diverges after a few integration steps. This can

be attributed to a stronger deviation ofnn
i (r ), obtained from the momentum balance, from

ng
e(r ), which is fixed and belongs to the given fieldEg

r (r ). But already small differences
betweenng

e(r ) and nn
i (r ) lead to large variations of the radial fieldEn

r (r ), according to
Poisson’s equation, and can produce a divergence of the numerical solution.
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FIG. 1. Scheme of the self-consistent positive column model.

To avoid the amplification of small deviations of the densities by Poisson’s equation,
an alternative treatment of the subsystem of (12) and (13) has been chosen. The Poisson
equation (12) is used to calculate the profilenn

i (r ) of the ion density for the given electron
densityng

e(r ) and the given radial fieldEg
r (r ). Thennn

i (r ) and the givenj g
r (r ) are applied

in the ion momentum balance to get a newEn
r (r ). Hence, the specific arrangement
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)
, (14a)
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Vn(r ) = −
r∫

0

En
r (r
′) dr ′ (14c)

of the equation system is used to determine the new profileVn(r ) of the radial potential.
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The consistent solution of both subsystems and the corresponding profile of the radial
potential are found if ultimately the given potentialVg(r )and its new profileVn(r ) coincide;
i.e., the relationVg(r ) = Vn(r ) holds for all radial positions. The corresponding numerical
task is to find such a potential functionVg(r ) for which the distance betweenVn(r ) and
Vg(r ) becomes sufficiently small. To assess the distance, an appropriate norm function

h = ‖Vn(r )− Vg(r )‖ (15)

has to be chosen. Here, either the mean relative errorhrel, the maximum normhmax, or the
Euclidean normhEucl, according to the expressions

hrel = 1

m

m∑
i=1

|Vn(ri )− Vg(ri )|
|Vg(ri )| , (16a)

hmax= max
1≤i≤m

|Vn(ri )− Vg(ri )|, (16b)

hEucl =
√√√√ m∑

i=1

(Vn(ri )− Vg(ri ))2, (16c)

is considered. The expressions are related to the discretization of the radial potential profile
applyingm radial positionsri .

Further on, different numerical methods to find a consistent solution of both subsystems,
i.e., to minimizeh, are discussed.

3.1. Iterative Methods

An often used method is an iterative treatment of the subsystems, i.e., starting thekth itera-
tion with the given radial potentialVg(r ) = V (k)(r ) and the corresponding radial field, solv-
ing the subsystem of the electron and excited atom kinetics to getn(k)e (r ) and j (k)r (r ), which
are then used in (14) instead ofng

e(r ) and j g
r (r ) to calculaten(k+1)

i (r ) and the new functions
E(k+1)

r (r ) and V (k+1)(r ). In the next iterationVg(r ) = V (k+1)(r ) and Eg
r (r ) = E(k+1)

r (r )
are used as the given radial potential and field. The iterative procedure is terminated if the
distance betweenV (k+1)(r ) andV (k)(r ) is sufficiently small. In some cases, iterative meth-
ods converge very fast and can lead to a sufficiently accurate result after about 10 iterations
[24]. However, in the case considered here, a divergence of the iterative method has been
generally found for different discharge conditions. The divergence cannot be prevented
by an appropriate blending, i.e., by applyingVg(r ) = ωV (k+1)(r )+ (1− ω)V (k)(r ) in the
(k+ 1)th iteration, where 0<ω ≤ 1 is the blending factor. As an example, the develop-
ment of the potential function of a neon column-plasma with radiusrw = 1.7 cm, pressure
p0 = 74.5 Pa, discharge currentIz = 10 mA, axial field strengthEz = 2.12 V/cm, and with
ω = 0.1, can be seen in Fig. 2. The potential profile, are compared with that self-consistent
potential, which is the result of a successful solution by means of an optimization technique
as explained at the end of this section.

3.2. Basic Aspects of Optimization

A more appropriate way is to use a nonlinear optimization technique to modify a given
potential profileVg(r ) so that the distanceh according to (15) becomes sufficiently small.
Therefore,Vg(r ) and h have to be expressed as functions of a number of parameters.
Knowing that polynomials are excellent approximations of radial potential profiles obtained
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FIG. 2. Courses of the radial space-charge potential obtained by a simple iterative treatment in comparison
with the self-consistent potential.

by probe measurements [18], a polynomial of the reduced radial positionr/rw and of
the order 15≤ n ≤ 30 with the parameter vectora= (a1, . . . ,an) ∈ Rn has been used to
parameterize the given potential profile and the norm function according to

Vg(r, a) = a1

(
r

rw

)2

+ a2

(
r

rw

)4

+ a3

(
r

rw

)5

+ · · · + an

(
r

rw

)n+2

, (17a)

h(a) = ‖Vn(r )− Vg(r, a)‖. (17b)

The terms of orders 0, 1, and 3 are omitted because of the natural choiceVg(0, a)= 0 and the
symmetry conditions− d

dr Vg(r, a)|r=0 = Eg
r (0, a) = 0 and− d

dr [ 1
r

d
dr (r

d
dr Vg(r, a))]|r=0 ∼

d
dr (n

n
i (r )− ng

e(r ))|r=0 = 0. The aim of a nonlinear optimization technique is to systemati-
cally minimize the norm-functionalh(a) by varying the coefficientsa1, . . . ,an. Therefore,
it is necessary for every potentialVg(r, a), which belongs to a specifica, to solve the sub-
system of the electron and excited atom kinetics, as well as the subsystem (14), to obtain
the correspondingVn(r ) andh(a). Generally, there exist two main strategies to find the
minimum of the functionalh(a). The first determines a descent direction aided by a gradi-
ent evaluation with the aim of performing a search in this direction in every optimization
step. The second performs a multidirectional search, and this one is often applicable ifh(a)
is discontinuous or even if the function values are “noisy.” Both variants are treated and
discussed in detail in the following to assess their suitability. In particular, algorithms that
can be adapted to run the optimization on parallel computers are considered.
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3.3. Assessment of Various Optimization Techniques

If we assume thath(a) has continuous second partial derivatives with respect to all of its
variables, then a gradient method such as the finite difference Newton method, the quasi-
Newton method [30–34], or at least a variation of these, could be applied. The scheme of the
finite difference Newton method is to calculate from a starting point a Newton direction and
to perform a line search until one reaches the minimum in that direction. The minimum point
is now chosen as the new starting point. The Newton direction is obtained from the first- and
second-order partial derivatives using finite differences. The advantage of gradient methods
is that they often need fewer optimization steps than multidirectional search algorithms, but
the numerical cost of every step is at least twice as high.

Among the multidirectional minimum-search algorithms, two methods, a modified
minimum-search algorithm in theRn adapted from Hooke and Jeeves (see [35]) and the
downhill simplex method from Nelder and Mead [36, 34], have been considered.

The minimum-search algorithm varies all components ofa with a fixed step size until
h(a) reaches the minimum. Then the step size is shortened and a new search starts.

The downhill simplex method is based on moving a nondegenerate simplex around the
spaceRn, changing its size but not its shape. The nondegenerate simplex is formed by the
point a and additionaln points resulting from the variation of each coordinate ofa. The
movement of the simplex is managed in such a way that the neighborhood of the corner
point with the smallest value ofh is examined systematically in each case and that the value
of h converges to a minimum during the movement. For this, the simplex is compressed,
expanded, or reflected at the corner point with the smallest value ofh, and the functionh is
calculated for each of the other corner points of the simplex in every step. The advantage
of the downhill simplex method is that it is relatively robust against cycles in the variation
of a and against falling into a local minima of the functionalh(a).

These three minimum-search algorithms have been implemented and checked. Here,
all three different norm functions have been used alternatively forh(a) to regulate the
variation ofa and to check the convergence. It has turned out that the mean relative error is
the best norm function to steer the minimum-search algorithm, i.e., to varya in such way
that the algorithm finds an optimum course to the minimum point. However, the Euclidean
norm is the most suitable norm function to steer the downhill simplex method and the
finite difference Newton method. The maximum norm is the appropriate one to assess the
convergence of the radial potential function and to break off the search algorithms, because
the maximum error mostly appears at radial positions very near the column wall, where the
potential profile strongly influences the radial flux of charge carriers toward the wall.

Figure 3 shows typical progressions of the three norm functions over a range of 500
optimization steps for the three different minimum-search algorithms. Here, a potential
function according to (17a) withn = 20 has been used and the same discharge situation
as in Fig. 2 has been treated. The finite difference Newton method yields a considerable
error reduction after about 40 steps but then comes into a saturation range with a very
slow improvement of the potential function. In particular, the mean relative error and the
Euclidean norm are much higher than for the other methods after 500 steps. The saturation in
the error reduction is a typical behavior of the finite difference Newton method and indicates
that a local minimum instead of a global minimum in the functionalh(a)has been found. The
minimum-search algorithm in Fig. 3b leads to very small values of all three norms already
after about 100 steps. However, during further steps the norm functions slightly increase
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FIG. 3. Courses of the maximum normhmax (solid line), the Euclidean normhEucl (dashed line), and the mean
relative errorhrel (dotted line) related to 300 radial positions over 500 optimization steps of the finite difference
Newton method (a), the minimum-search algorithm (b), and the downhill simplex method (c).

except for the mean relative error, which has been used to steer the potential variation in
that method. A disadvantage of the minimum-search algorithm is the irregularity of the
error reduction, which leads to a cyclic behavior of the potential variation in some cases.
The most continuous decrease of the norm functions has been obtained by the downhill
simplex method, which can be seen in Fig. 3c. This method leads after 500 steps to the
smallest maximum norm, which is the most significant one to assess the improvement of the
potential profile. The continuous error decrease indicates the stability of that method, which,
among the three methods, most rarely comes into a saturation of the potential variation.
An additional advantage of the multidirectional minimum-search algorithms in comparison
with Newton-like methods is that one step in the downhill simplex method as well as in
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the minimum-search algorithm needs half as much steps of evaluation of a new potential
profile by treating each time the electron and excited atom kinetics and applying (14).
Consequently, the downhill simplex method is the most stable and efficient method for
finding a consistent solution for the radial potential.

Additionally, the achieved accuracy of the result, strongly depends on the model function
used forVg(r, a). Sufficient accuracy in the adjustment of the radial potential, i.e., a mean
relative error of less then 0.1% and a maximum norm of less then 0.1 V (which means
about 0.5% of the radial potential at the wall), can be reached using polynomial functions
according to (17a) of an appropriate order. In Fig. 4 the dependence of the three norm
progressions for the downhill simplex method on the number of coefficients and on the

FIG. 4. Courses of norm functions as in Fig. 3 over 500 optimization steps of the downhill simplex method
where a polynomial function with 16 coefficients (a), with 20 coefficients (b), and with 30 coefficients (c) has
been used forVg(r, a).
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chosen powers of the polynomial are demonstrated as in Fig. 3. A polynomial withn = 20
and 20 coefficients has been used in Fig. 4b and a polynomial withn = 30 and 30 coefficients
has been considered in Fig. 4c. In Fig. 4a, a polynomial according to (17a) withn = 20
(however, without the terms involving the coefficientsa12, a13, a16, anda17, and therefore
with only 16 coefficients) has been used. It can be seen that only in the case of 20 coefficients
a continuous decrease of all norm functions over 500 optimization steps has been obtained.
Finally, a maximum norm of about 0.4 V has been reached. In the case of 16 coefficients,
after the first 100 steps no further reduction of the maximum norm and, hence, no further
improvement of the radial potential function could be reached because of the insufficient
model function. The norm progressions in Fig. 4c, belonging to the case of 30 coefficients,
look similar to those in Fig. 4a. However, the insufficient error reduction over 500 steps
in this case is presumably caused by the greater effort of the function minimization in the
30-dimensional space.

4. ILLUSTRATIVE RESULTS

In this section, results obtained by the method elucidated in the preceding section will
be presented. As an example, again the neon dc discharge at 74.5 Pa pressure in a tube
with the radius 1.7 cm is considered. For a discharge current of 10 mA an axial electric
field strength ofEz = 2.12 V/cm in the column plasma has been found by electrical probe
measurements [18].

The radial space-charge potential has been self-consistently adjusted using the downhill
simplex method and a polynomial with 20 coefficients according to (17a). The radially
inhomogeneous electron kinetics within this method has been treated by strictly solving the
elliptic Eq. (4) as well as by applying instead of (4) the above mentioned nonlocal approach.

The corresponding results for the radial space-charge potentialV(r ) are shown in Fig. 5.
The results have been obtained using the axial field strengthEz = 2.12 V/cm according to the
measurements. The potential profile obtained by applying the nonlocal approach exceeds the
profile obtained by solving Eq. (4) particularly in the region near the tube wall. This discrep-
ancy results mainly from the overestimation of the charge carrier production and, hence,
of the densityjr of the radial ambipolar flux of charge carriers by the nonlocal approach,
which have been extensively discussed already in previous papers [18, 25]. The latter can
be clearly seen from the corresponding profiles ofjr presented additionally in Fig. 5.

In Figs. 6 and 7 the densities of the most important particle components in the noon plasma,
i.e., of electrons, ions, and atoms in the lower excited states, and the rate coefficients of
important electron collision processes are shown as functions of the radial position. These
quantities are related to the radial potential displayed in Fig. 5 by the solid line and have
been obtained by the self-consistent description including Eq. (4). In particular, the densities
of the resonance statess4 ands2 strongly decrease with increasing radial position. Larger
deviations between the electron and ion density have been found in the range from about
80% of the tube radius onward. The strong radial decrease of important electron collision
rate coefficients, in particular, those of excitation and ionization of the ground state neon
atoms with increasing radial position, indicates the pronouncedly nonlocal behavior of the
neon plasma at the considered pressure.

If the value of the axial field strengthEz is changed around the measured axial field of
2.12 V/cm, a sensitive dependence of the radial potential onEz is obtained. Figure 8 shows
the profiles ofV(r ) obtained by the self-consistent description including Eq. (4) for three
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FIG. 5. Radial space-charge potentialV(r ) and radial flux densityjr of the charge carriers from the self-
consistent description by strictly solving Eq. (4) (solid and dash-dotted line) and by applying the nonlocal approach
(dashed and dotted line).

FIG. 6. Densitiesni (r ) of neon ions (solid line),ne(r ) of electrons (dashed line),Ns5(r ) (dash-dash-dotted
line) andNs3(r ) (dash-dotted line) of metastable neon atoms andNs4(r ) (dotted line) andNs2(r ) (dash-dot-dotted
line) of neon atoms in the lower resonance states.
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FIG. 7. Radial courses of the electron collision rate coefficientszio
0 of the ionization of ground state neon

atoms (solid line),zio
1 of the ionization of the lowest metastables5-state (dashed line),zin

01 of the excitation of
ground state neon atoms to the lowest metastables5-state (dash-dotted line), andzin

15 of the excitation of the lowest
metastables5-state to higher excitedp-states (dotted line).

values ofEz, in comparison with the radial potential found by probe measurements [18].
Notice that for all these different values of the axial field, reasonable results for the plasma
properties, in particular for the electron kinetic quantities, have been obtained. The accuracy
of the results has been checked by, among other things, the fulfillment of the electron particle

FIG. 8. Radial space-charge potentialV(r ) from the self-consistent description by strictly solving Eq. (4)
and applying the values 2.1 (dashed line), 2.2 (solid line), and 2.3 V/cm (dash-dotted line) of the axial fieldEz in
comparison with the result of probe measurements (dotted line).
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and power balance. Here, the numerical deviations from the fulfillment amount to less than
2% in the particle balance and less than 0.5% in the power balance. It becomes obvious
from Fig. 8 that quite good agreement between the measurements and the theoretical result
for Ez = 2.2 V/cm has been reached.

Consequently, the presented method for the self-consistent description allows a rather
accurate determination of the radial space-charge potential if an appropriate value of the
axial field strength is given and the relevant atomic data are known with sufficient accuracy.

5. CONCLUSION

A method for the self-consistent description of radial space-charge potential and kinet-
ics of the plasma components in the cylindrical axially homogeneous column plasma of
dc discharges has been developed. The treatment of the nonlocal kinetics of the electron
component is based on the solution of the relevant radially inhomogeneous kinetic equation
applying a two-term expansion of the electron velocity distribution. The densities of the
excited neutral particles in the plasma are determined by their particle balances. The ion
momentum balance and the Poisson equation are used to calculate the ion density and the
radial potential.

Several techniques to solve self-consistently these nonlinearly coupled equations have
been applied and assessed concerning their convergence and applicability. The techniques
used are based on the iterative improvement or optimization of the radial profile of the
radial space-charge potential. In the scope of these techniques, in every step the electron
and excited particle kinetics are consistently treated for a given radial potential, which
yields, especially, corresponding radial profiles for the electron density and the density
of the radial ambipolar flux. Using these densities, a new potential is obtained applying
the ion momentum balance and Poisson’s equation. The given potential profiles have been
varied and the treatment of the plasma components has been repeated until the new potential
sufficiently coincides with the given potential. It has been found that the iterative adjustment
of the radial potential, i.e., taking the new potential, as the given potential in the next step,
is inapplicable to solving the relevant nonlinear equation system. Appropriate methods
to find the self-consistent radial potential are function minimization techniques such as
gradient methods or multidirectional minimum-search algorithms. These techniques have
been used to optimize the coefficients of an appropriate polynomial representation of the
radial potential in such a way that the distance between the polynomial and the corresponding
new potential approaches a minimum. The downhill simplex method of Nelder and Mead
[36] with an appropriate steering using the Euclidean norm has turned out to be the most
stable and suitable technique for optimizing the radial potential profile.

Initial results of the method for the column plasma of a neon dc discharge at a pressure of
74.5 Pa have been presented to illustrate the power of this optimization technique. The axial
electric field strength has an unexpectedly sensitive influence on the radial space-charge
potential. Furthermore, it could be clearly shown that the use of the nonlocal approach to
treat the radially inhomogeneous electron kinetics instead of the strict kinetic treatment
leads to a noticeable enhancement of the radial potential course especially in the outer
column region.

By using the new method it could be demonstrated that a steady state of a column plasma,
including the space-charge confinement (i.e., reasonable solutions for the electron quantities,
the densities of ions and excited atoms, and the space-charge field) can be self-consistently
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determined for several in reasonable limits given values of the axial field strength. This fact
means that the steady state of a column plasma and, in particular, the axial field established
in the steady state, is not sufficiently determined by the involved basic equations of the
kinetics of plasma components inside the column. Additional conditions have to be taken
into account that answer the question of what happens when the charge carriers reach the
wall. Such conditions may eventually result from a detailed description of plasma–wall
interaction processes, in particular of the adsorption and recombination of charge carriers
and the establishment of the negative surface charge at the wall. In this respect, additional
effort has to be undertaken to elaborate the basic physical mechanisms, which determine
the axial field strength, and to deduce the appropriate conditions. However, the presented
method is a necessary and important step for such an extended investigation and for the
development of a complete self-consistent description of the column plasma, including its
interaction with the discharge tube wall.
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